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Abstract The plane problem or a crack terminating at the interrace or a bimaterial piezoelectric.
and loaded on its faces. is treated. EmphasIs is placed on how to transform this problem mto a non­
homogeneous Hilbert problem. To make the deri vallon tractable. the concept of the axial conjugate
is introduced and related to the complex conjugate. The angle between the crack line and the
interface may be arbitrary. Copyright ( 19lJ6 Elsevier SCIence Ltd.

I. Il"TRODUCTION

The study of cracks within piezoelectric materials is of paramount importance for many
electroelastic micromechanics models and numerical fracture mechanics. because piezo­
ceramic materials often contain many visible cracks prior to their employment. The
existence of these defects greatly affects the electric. dielectric. piezoelectric. elastic and
mechanical properties of piezoceramics (Okazaki. 1985). But this area of study has received
relatively little attention in the literature. This is probably due to the complexity of the
constituent equations for the materials. which are inherently anisotropic and involve a large
number of material constants. Parton (1976) has considered the problem of a finite crack
at the interface between two piezoelectric materials subjected to a far field uniform tension.
Sosa and Pak (1990) developed a three dimensional solution for a semi-infinite craek in a
piezoelectric material. More recently. Pak (1992) investigated the electroelastic fields and
the energy release rate for a finite crack by way of the method of distributed dislocations
and electric dipoles. Kuo and Barnett (1991) and Suo cf al. (1992) solved the boundary
value problems of electroelastic materials with interface cracks. Most of the above studies
concentrated on the singularities at the tips of an interface crack. However. the problem of
a crack terminating at. and at an arbitrary angle to. the interface between two piezoelectric
materials does not seem to have been studied. In the following sections. the explicit solutions
to the problem of an arbitrarily-oriented crack terminating at the interface between dis­
similar piezoelectric materials will be derived by using the extended Stroh formalism (Bar­
nett and Lathe. 1975) and the concept of the axial conjugate. The present problem will be
transformed into a special case of the Hilbert problem and then its solution may be easily
written out.

2. (;El"ERAL SOLLT[Ot\ TO THE (jOVER:---'I'-i(j EQUATIONS OF LINEAR
PIEZOELECTRICS

(n this section. the extended Stroh formalism (Barnett and Lothe. 1975) used to treat
crack problems in dissimilar piezoelectric materials is reviewed. Throughout this paper. the
shorthand notation introduced by Barnett and Lothe (1975) and rectangular Cartesian
coordinates (Y [• .Y:-.Y;) are used. Lower case Latin subscripts will always range from I to 3.
upper case Latin subscripts will range from I to 4. and the summation convention will be
used for repeating subscripts unless it is otherwise indicated.

Consider a 2-D electroelastic problem in which all fields depend only on in-plane
coordinates. In the absence of body forces and free charges. the basic equations used are
as follows (Barnett and Lothe. 1975: Pak. 1992):
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and Uk. cP. U'I and D, are. respectively. elastic displacements. electric potential. stresses and
electric displacements. C'I,m' 1;1) and e'I' are. respectively. elastic moduli. dielectric constants
and piezoelectric constants. The solutions to eqn (I) may be expressed as (Pak. 1992)

v = af(:) (6)

(7)

where L = lUI Ue ii, cP ~ 1. f is an arbitrary function vector to be determined, a and pare
obtained from

(8)

and Q. Rand Tare 4 x 4 matrices:

(9)

This is an eigenvalue problem consisting of four equations. for which a nontrivial a
exists if P is a root of the determinantal equation

(10)

Since (10) admits no real root. the eight roots. Pl •...• PK' form four conjugate pairs
(Suo el of.. 1992). Let Im(p,) > 0 with associated vectors a,. and define

where ::, = ·\'1 +P"\e'

The solution for U and (jj is then given by (Suo el al.. 1992)

v = Af(:) + Af(:')

(II)

(12)

( 13)

(14)
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where (Ji = ia,] a,c a" D,; T. g(.:) = df(.:)/d.:, the overbar denotes the complex conjugate. and
Bi in (14) is a 4 x 4 matrix:

(B,lA" = (£,I,.JI +P\f£iKJ:)A1\f (i'vfnotsummed).

3. AN ARBITRARILY-ORIE:"JTED CRACK ENDING AT THE INTERFACE

(15)

Consider an inclined crack of length 2a terminating at the interface between two
dissimilar anisotropic piezoelectric half spaces (Fig. I). The bonded interface coincides with
the xI-axis, and one of the crack tips touches the interface at XI = O. The material constants
of the inhomogeneous composite solid are expressed as

't' ( (), I ",.11.", .y, >
1:/./1\"/1/ = <) I.

E,JA". x· < 0
(16)

where. here and subsequently. the superscripts" [ ... and" L" are associated with the upper
material and the lower material respectively. Let - t(s) denote the traction and surface
charges acting over the crack faces. The boundary conditions for the problem with con­
tinuous U and ac across the bimaterial interface are then

a; (.\. -j )11, = a,( (s. Y. }II, = -t(s) lsi < a

(17)

(18)

( 19)

(20)

where a, (i = 1,2) are vectors defined in the last section. (Ill' II:) = (- sin 'X, cos 'X) andy. and
s are coordinates local to the crack. shown in Fig. I.

Inserting (13) into ( 17). one has

s

s=-a

FIg. 1. Geometn for an lIlciined crack.
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(21 )

It is obvious that the left-hand side of (21) is a function, analytic in the upper half­
plane and the right-hand side is another function, analytic in the lower half-plane. Hence,
put

(22)

(23)

where the function t/!(::) is analytic in the whole plane. ensures that both sides of (21)
become satisfied identically. Similarly. from (14). ( U,n and (19)

(24)

(25)

If the eigenvalues p are all distinct. Bf and B; (i = 1.2) are non-singular. In this case,
eqns (24) and (25) may be solved for gl(::) and gi(.:;). which yields

Differentiating (22) and noting (26) yields

Cg1(.:;l=t/!'(.:;) ':;E[

where the prime denotes the derivative with respect to the associated argument. and

To st udy the property of matrix C. define

\ = lAB: I

where H is Hermitian (Suo ('{ ul.. 1992). Hence

C = - iHB\.

(26)

(27)

(28)

(29)

(30)

(31 )

(32)

It can be seen from (32) that C has the same rank as that of H. In generaL H is non­
singular (Suo ('{ ul.. 1992). Thus

(33)

The present problem is now transformed into a non-homogenous Hilbert problem. To
make the derivation tractable. the concept of axial conjugate is introduced in the following



The study of cracks within pieLOelectric materials

X2

x·

a
o ~-_----..;- ..L- _

a+f3

-
Z

Fig:. 2. The definitions of ~ and :;

5SS

way. Let:: denote the axial conjugate of:: about the .y*-axis (Fig. 2). It can be seen from
Fig. 2 that

(34)

which is the relation between axial and complex conjugates. As a consequence, (14) may
be rewritten in the form

The substitution of (35) into (20) and noting (21), (22) and (33) yields

Gr{!'- (IHGr{!' (Il = -e"t(l) 111 ='S {/

where

1= -{/
cos -x+p sin-x

and

G = (B~ cos -x - Bi sin J:)e"C ].

(35)

(36)

(37)

Following the technique of Clements (1971), the problem can be transformed into

Sr{!" +}.*Sr{!' (I) = -e":\It(.\) III ='S {/

in which;'* = diag[i.] I._ I.; i..j]. and N is obtained from

(G-i.GlN = ()

with

IG-iG =()

and the matrix S is evaluated from

(38)

(39)

(40)
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s= NC. (41 )

Noting that the rank of S is important later, a proof is presented to show that, when the
four roots i' l of (40) are all distinct and the matrix C is in full rank, the matrix S is non­
singular. First, it can be seen from (39) that N is non-singular, by the assumption that all
the i' l are distinct. In this case S has the same rank as that of C, from (41). Next it is proved
that C is non-singular if C is in full rank. Thus, defining

pi = diag[pi p\ p\ pi)

so that (Qu and Bassani, 1'11\'1)

-B\ pl.

From (37), one has

C = B~ ( cos xl + sin Xpl )e'"C I

(42)

(43)

(44)

where I is the unit matrix. Since B~ is in full rank by the previous assumption, C has the
same rank as that of C. Therefore it is clear from (41) that S is non-singular, by the
assumption that C is in full rank and all the i' l are distinct.

The appropriate solution to (31\) may now be given as (see Clements. 1'171)

where

SIV(::) = ~e'.' X(I(:::») 1'" X*(s(:::),~)Nt(~)d~
_TCI , "

X(s) = diag[X, (s) Xc (.1) X,(s) X~ (s»)

X*(.\,~) = diag[.I, (.\,~) .lc(.I,~) .I,(s,~) Y4(.I·, ~))

X~(s) = (s+a) ''''(\--a)'''A I

I
1II~ =..., .Iog I.~

~TCI

.I~(s,~) =
X;; (~)( ~ - .\ )

_ en: I"IV(::) =-. S I X(s(:::» X*(s(::), ONtW d~.
2m

oj if

(45)

(46)

(47)

The right-hand side of (47) may be evaluated numerically since all terms of it are
known functions. For example, one may calculate them by an integration formula of
Gaussian type, for which (47) becomes

0(::) = (48)

where W, (j = 1.2, ... II) are the weighting constants of the related integration formula. By
inserting into (35). one obtains
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F _elY, S
(J" = -2Re--.B:,C

27[1
"

'X(s(.:)) I X*(s(.:),¢;lNt(¢,lW, (F= L,U)
I' I

(49)

where (J,I = ~ 0), ()':, ()',I, D: :' ,()':I stands for the stress in the upper material. and others can
be defined similarly.

.t, CRACK TIP SINGLLARITIES OF fl.}

In order to study the crack tip singularities of stress and electric displacement. the
polar coordinates (I', (J) centered at the tips with (} = 0 along the crack line are introduced.
An asymptotic form is used to discuss the order of singularity for flu at the two crack tips:

(a) Crack tip at ,\, =\, = O.
Let I' be the distance from the tip. In this case the variable.: can be expressed as

:: = r(cos(l!+cx)+psin(O+:x)) (50)

the singularity near the tip can be obtained by taking the asymptotic limit of (49) as I' -> 0

"
. Ill' .." (COs(ll+CX)+Psin(o+CX))' "'A \ l

(J (1.1) = Re F I A -------- (-2a)'''A ' ....)F~"
·1 1.

1
• cos:x + P sin :x

where F = L. C were defined in (49). (/ = L 2, and

FI = i IYB' C 'S 'Iii e if
IT

"
F(" = I X*( -l/. ~I;)M(¢I;)H'I"

/1= 1

(51 )

(52)

(53)

(54)

Hence. there are four modes of singularities at the tip touching the interface: I' '''A

(K = 1,2.3.4). where iliA are defined in (46)4'

(b) Crack tip at x, = 2acos cx and x, = 2a sin cx.
Again let I' be the distance from the tip. In this case the variable:: can be expressed as

:: -- 2(/( cos :x+p sin:x) = 1'( cos«(}+:x) + p sinW+ cx)). (55)

The order of singularity for fl,1 near the tip can be obtained by taking the asymptotic
limit of (49) as I' -> O.

(JI(r II) = Ref F'
(I " L 1,.1 (

COS«(}+CX)+Psinw+:x,_,))"'1o. ' \ ,l
1'''', I '. ( - 2a) "'10. )F~,

cos cx + P Slll cx ! 1
(56)

which shows that the orders of the singularity in the stress and electric displacement fields
at the tip are 1''''10. I (K = 1.2. 3. 4).

In addition. if the two materials become idcntical and cx = O. it follows from (44) that

(57)

It is obvious that G = - G. Therefore, thc roots i, of (40) are equal to - I. Substituting
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this result into (46)4' one sees that!l1 A = 12 for all K. Thus, the matrix S may be singular.
I n this case we can directly solve (36) for 'V (::). which yields

(58)

Further. if 'X Ie 0 we may also prove that !11 k = 12 through use of a coordinate system
local to the crack line and an appropriate transformation given in Yu and Qin (1996). For
the sake of conciseness we omit those details, which are tedious and algebraic here.

5 I"UMERICAL ILLCSTRATlOl\

For convenience we only consider an inclined crack terminating at the interface between
transversely isotropic materials. The upper and lower materials are assumed to be the PZT­
5H and the PZT-5, respectively. The material constants for the two materials are given in
the Appendix.

Equation (10). for the case of a transversely isotropic material. reduces to

(59)

with

in which the well-known two index notation has been adopted (Nye, 1957). e'l and cij are
the reduced material constants obtained by using the following convention: replace zj or kI
by p and q, where i.j. k, / take the values of I 3. and p, q assume the values 16 according
to the following:

ij or k/
p or q

11
1

22
2

33 23 or 32
4

31 or 13
5

12 or 21
6

In accordance to this representation it follows that ('PI! = Clkl' e ,p = eikl- for i,j, k. I = 1­
3, p. q = 1-6.

The solutions of (59) for PZT-5H and PZT-5 are

p\ = -0.1735+0.931Si, p~ = 0.1735+0.9318i.

p\ = 0.9337i, pi = 0.9972i.

p~ = -O.2033+0.8813i, p~ = 0.2033+0.8813i.

p\ = O.92S0i. p~ = 0.9620i.
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Table I. The valucs llf IliA vs angle 1

0 15 " 35 45 90

Re(II/ 11 0.5000 11.5:104 0349' 0.2447 o 13g2 0.0299 0.5000
Re(II/.1 0.'417 O...l4:i7 04004 o3:i:i3 03060 0.2533 0.06n
Re(1I1;1 0.4:i99 O...l4:i1 05167 0.:i077 05022 04977 00696
RC(IIU 0.5000 04230 04169 113615 0.3060 0.2504 0.5000

Im(1I1 1 x 10') 000 - 0.722' 0.0903 0.1734 0056:i -0446 0.0002
[m(lI1,x 10') ··03460 2.147 0.0037 006g4 -11.1400 2.36g 0.0013
[m(lI1, x 10') o 1517 - 7. :i69 - 2.312 .U5g 1.944 - 5.445 0.0021
Im(lI1, x 10') 00 011 0.0 00 00 00 0.0

The variations of the singularity order IJIA with the angle Y. are presented in Table 1.
It can be seen from Table I that the order of singularity in the stress and electric

displacement fields depends strongly on the inclined angle Y.. However. the numerical results
indicate that the values of Im(lJId are very small for the material combination PZT-SH and
PLT-S.

6. CONCLlSIONS

The plane problem of a crack that terminates at the interface between two piezoelectric
materials has been treated. The study shows that this problem can be transformed into a
non-homogeneous Hilbert problem by way of the concept of the axial conjugate. The
numerical results indicate that the order of singularity in the traction-charge field at the
crack tips depends strongly on the inclined angle 'Y.
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~\PPE'JDIX

(II Matenal properties for P/T-'H (PaL 19(2)
c" = c" = 126GPa.
(', = :i:iGPa.
CI~ = = 5) GPa.
(II = 117GPa.
(,~ = C(,~. = ):\3 GPa.
c," = .Ie,· (,J ~ J:i.' GPa.
('1_' = ('I; = 6.:;(' nl~.
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('II = 23.3Cn1:.
c" = ":c = 17C m'.
1:" = 1:" = 151 x 10 '''C Ym.
I:,,=DOxIO '''CYm.

(2) Material properties for PZT-5 (Dunn and Taya. 1'193).
[" = ( " = 121 GPa.
c, = 75.4 GPa.
'" = C = 75.2GPa.
[" = 111 GPa.
" = c,.,. = 21.1 GPa.

c"" = - c.,) = 22.S GPa.
(': = "I' = -'5.4C m'.
t' , = IS.SC me.
C,. = c'" = 12.3C m'.

=,<,=SI.07xIO '''CYm.
1:" = 1.'.46 x 10 '''c Vm.

It should he noted that the indices in the Appendix of Pak (1'192) and in Table I of Dunn and Taya (1993)
have been changed due to the different coordinate systems used. In our study the x"axis is chosen to be the poling
direction. and the crack line is in the X,'X, plane.


