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Abstract - The plane problem of a crack terminating at the interface of a bimaterial piezoelectric.
and loaded on its faces. 1s treated. Emphasis is placed on how to transform this problem into a4 non-
homogeneous Hilbert problem. To make the derivation tractable. the concept of the axial conjugate
is introduced and related to the complex conjugate. The angle between the crack line and the
interface may be arbitrary. Copyright ¢ 1996 Elscvier Science Lid.

1. INTRODUCTION

The study of cracks within piezoelectric materials is of paramount importance for many
electroelastic micromechanics models and numerical fracture mechanics. because piezo-
ceramic materials often contain many visible cracks prior to their employment. The
existence of these defects greatly affects the clectric. dielectric. piezoelectric, elastic and
mechanical properties of piezoceramics (Okazaki, 1985). But this area of study has received
relatively little attention in the literature. This 1s probably due to the complexity of the
constituent equations for the materials. which are inherently anisotropic and involve a large
number of material constants. Parton (1976) has considered the problem of a finite crack
at the interface between two piezoelectric materials subjected to a far field uniform tension.
Sosa and Pak (1990) developed a three dimensional solution for a semi-infinite crack in a
piezoelectric material. More recently, Pak (1992) investigated the electroelastic fields and
the energy release rate for a finite crack by way of the method of distributed dislocations
and electric dipoles. Kuo and Barnett (1991) and Suo er al. (1992) solved the boundary
value problems of electroelastic materials with interface cracks. Most of the above studies
concentrated on the singularities at the tips of an interface crack. However, the problem of
a crack terminating at, and at an arbitrary anglc to, the interface between two piezoelectric
materials does not seem to have been studied. In the following sections. the explicit solutions
to the problem of an arbitrarily-oriented crack terminating at the interface between dis-
similar piezoelectric materials will be derived by using the extended Stroh formalism (Bar-
nett and Lothe, 1975) and the concept of the axial conjugate. The present problem will be
transformed into a special case of the Hilbert problem and then its solution may be casily
written out.

2. GENERAL SOLUTION TO THE GOVERNING EQUATIONS OF LINEAR
PIEZOELECTRICS

In this section. the extended Stroh formalism (Barnett and Lothe. 1975) used to treat
crack problems in dissimilar piezoelectric materials is reviewed. Throughout this paper. the
shorthand notation introduced by Barnett and Lothe (1975) and rectangular Cartesian
coordinates (x,.v.. vy) dare used. Lower case Latin subscripts will always range from 1 to 3,
upper case Latin subscripts will range from | 16 4. and the summation convention will be
used for repeating subscripts unless it 1s otherwise indicated.

Consider a 2-D c¢lectroelastic problem in which all fields depend only on in-plane
coordinates. In the absence of body forces and free charges. the basic equations used are
as follows (Barnett and Lothe. 1975: Pak. 1992):

hh
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nl.l.l = 0 (])
nr‘/ = E/./Km L’;I\.m (2)
where
. Uy K = 2 ‘3 (3)
Tl K=4
- g, LJ=1.2.73 @)
YD, i=1.23J=4
Copn J K=1.2.3
£ € i, J=1.2.3: K=4 )
T e K=1.2.3: J=4
—-&, J=K=4

and . ¢. 6, and D, are. respectively, elastic displacements. electric potential. stresses and

electric displacements. C,,,,. ¢, and e, are. respectively, elastic moduli. dielectric constants
and piezoelectric constants. The solutions to eqn (1) may be expressed as (Pak. 1992)

U = af(-) (6)

T= X 4pNs (N

where U = {u, u.u,¢p) ", £ is an arbitrary function vector to be determined. a and p are
obtained from

[Q+p(R+RN)+pTla=0 (8)
and Q. R and T are 4 x 4 matrices:
Q/A = E\xr- Ry = Ejgre Ty = Epg-. (9)

This is an eigenvalue problem consisting of four equations, for which a nontrivial a
exists if p is a root of the determinantal equation

IQ+p(R+RN+p T| = 0. (10)

Since (10) admits no real root, the eight roots. py..... ps. form four conjugate pairs
(Suo et al.. 1992). Let Im(p,) > 0 with associated vectors a,. and define

f(z) = [ /1(20) f2(22) fulzs) falz)) T (11)
A=[a a. a, a,] (12)

where =, = x|+ ps.
The solution for U and e; is then given by (Suo ¢r ¢l., 1992)

U = Af(2) + Af(2) (13)

6. =Bg(0)+Bg) (i=1.2) (14)
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wheres, = {6, 6.0, D,)". g(z) = df(z);dz, the overbar denotes the complex conjugate, and
B;in (14) 1s a 4 x 4 matrix :

By =(Exn +psEx )4, (Mnotsummed). (13)

3. AN ARBITRARILY-ORIENTED CRACK ENDING AT THE INTERFACE

Consider an inclined crack of length 2« terminating at the interface between two
dissimilar anisotropic piezoelectric half spaces (Fig. 1). The bonded interface coincides with
the x,-axis, and one of the crack tips touches the interface at v, = 0. The matenal constants
of the inhomogeneous composite solid are expressed as

(Eln, x>0

(16)
LEL. v <0

bl./l\'m =

where. here and subsequently. the superscripts " and L™ are associated with the upper
material and the lower material respectively. Let —t(s) denote the traction and surface
charges acting over the crack faces. The boundary conditions for the problem with con-
tinuous U and . across the bimaterial interface are then

Uf(x,.0) = U (x,.0) (17)

b (x,.0) =ai(x,.0) (18)

Uy, xa) =0 Ixi+x3| — = (19)

el (s, =6l (5. = —Hs) |s| <ua (20)

where a, (i = 1. 2) are vectors defined in the last section, (#,. 1) = (—sin «,cos %) and x and
s are coordinates local to the crack, shown in Fig. 1.
i Inserting (13) into (17). one has

b x,

iJKm

EiJKm
Fig. 1. Geometry tor an inclined crack.
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A=A (v) = A () AT (v)) vl =0 2n

It is obvious that the left-hand side of (21) is a function, analytic in the upper half-
plane and the right-hand side is another function, analytic in the lower half-plane. Hence,
put

A ) —-AT () =) zel (22)
A () AT ()=o) cel (23)

where the function #(z) 1s analytic in the whole plane. ensures that both sides of (21)
become satisfied identically. Similarly. from (14). (18) and (19)

Big' (-) = Big"(5) -eU (24)
Big'(-) = Big8' () -elL. (29

If the eigenvalues p are all distinct. Bf and B} (i = 1.2) are non-singular. In this case,
eqns (24) and (25) may be soived for g(z) and g*(z). which yields

g (z) =(BY) 'Big'(5) :-el (26)
g () =(BY) 'Big' (5 el 27)

Differentiating (22) and noting (26) vields
Cg'(x)y=y'(z) zel (28)

where the prime denotes the derivative with respect to the associated argument. and

C=A"—ABY) 'B!. (29)

To study the property of matrix C. define
H=Y +Y' (30)
Y = /AB. ' (31)

where H is Hermitian (Suo ¢ al.. 1992). Hence
C = —/HB!. (32)

It can be seen from (32) that C hus the same rank as that of H. In general. H is non-
singular (Suo er af.. 1992). Thus

g (sy=C W'z zel. (33)

The present problem is now transtormed into a non-homogenous Hilbert problem. To
make the derivation tractable, the concept of axial conjugate is introduced in the following
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x#

Fig. 2. The definitions of Z and =.
way. Let 7 denote the axial conjugate of - about the v*-axis (Fig. 2). It can be seen from
Fig. 2 that

i ’.C/(1~/~’» W e 2 6211_: (34)

= e

which is the relation between axial and complex conjugates. As a consequence, {14) may
be rewritten in the form

o, = Bg(z)+¢ “"BE>). (35)
The substitution of (35) into (20) and noting (21). (22) and (33) vields
Gy (9+Gy (v) = —ets) |s| <a (36)

where

s = ) . —d
COsSx+psinx

and

G = (B! cosx—B! sinx)e”C '. (37)
Following the technigque of Clements (1971). the problem can be transformed into
Sy’ + S’ (v) = —e¢"Nt(s) 3| <u (38)
in which 4* = diag{+, 7. 2. 2,]. and N is obtained from

(G- /GIN=0 (39)

with
IG—2G =0 (40)

and the matrnix S 1s evaluated from
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S = NG. (41)

Noting that the rank of S is important later, 4 proof is presented to show that, when the
four roots 2, of (40) are all distinct and the matrix C is in full rank. the matrix S is non-
singular. First, it can be seen from (39) that N is non-singular, by the assumption that all
the 7, are distinct. In this case S has the same rank as that of G, from (41). Next it is proved
that G is non-singular if C is in full rank. Thus, defining

PC =diag[p} pt pt pi] (42)
s0 that (Qu and Bassani. 1989)
B = —BiP‘. (43)
From (37). one has
G = BS{(cos 2zl +sin 2P )e”C ! (44

where 1 is the unit matrix. Since B¢ is in full rank by the previous assumption. G has the
same rank as that of C. Therefore it is clear from (41) that S is non-singular, by the
assumption that C is in full rank and all the 2, are distinct.

The appropriate solution to (38) may now be given as (see Clements. 1971)

761‘1 A
SU') =, FXGEN | XTG)- ONKD d (43)
where
X(s) = diag[X (s) X.(s) X:(s) X (5)]
X*(5.0) = diag[,r,(.s-. <) 1. (5. g) V(s Q) }1,4(&5)]
;\/[\(.S‘) — (~V+fl) ’“A(A\"—u)/”l\ )
l -
My = 77[’[.10{1 /x
. |
)= - . o
XN —y)
If ST # 0 then
_617 » v ] v
Yo = i S 'Xs(z) [ X*(s(2). HNt(E) dC. @7

v

The right-hand side of (47) may be evaluated numerically since all terms of it are
known functions. For example. one may calculate them by an integration formula of
Gaussian type. for which (47) becomes

_CU "
V() = 5 S X)) Y XR().EONHE )W, (48)

2ri =

where W, (j = 1.2....n) are the weighting constants of the related integration formula. By
inserting into (35). one obtains



The study of cracks within piezoelectric materials 587

—€

o, = —2Re

BIC 'S 'X(s(2) Y X*GE).EINUENW, (F=L.U)  (49)
izl

2ni

where 6! = ¢!, 6 ali D7, ¢, stands for the stress in the upper material. and others can
be defined similarly.

4. CRACK TIP SINGULARITIES OF 11,

In order to study the crack up singularities of stress and electric displacement. the
polar coordinates (r, () centered at the tips with ¢ = 0 along the crack line are introduced.
An asymptotic form 1s used to discuss the order of singularity for I1;, at the two crack tips:
(a) Crack tip at x| = v, = 0.

Let r be the distance from the tip. In this case the variable - can be expressed as

o =r(cos(0+2)+psin(0+ %)) (50)

the singularity near the tip can be obtained by taking the asymptotic limit of (49) as r — 0

cos(B+ %)+ psin(d+a)\ " \
0’:‘/(1'. 0) = RC[FIW{ r u:,\<8(,)§(7,,,,, 1? f’\ ( T 1)) (—2a)" 1 >F§q:| (51)
! . Cosx+psinz
where F = L. U were defined in (49). ¢ = 1.2. and
CL(mygyy = diag[L(n ) L) Limy) Limy)] (52)
Ff, = ¢"BIC 'S (53)
n
FI:L/ = Z X*(—a. ;/;)Nt(‘:/;) ””/w (54)
=1

Hence. there are four modes of singularities at the tip touching the interface: r "+
(K = 1,2.3.4). where ni; are defined in (46),.

(b) Crack tip at x; = 2¢¢os % and x> = 2asin x.
Again let r be the distance from the tip. In this case the variable = can be expressed as

Z=2a(cosx+psinz) = r{cos{U+x)+ psin(f+a)). (55)

The order of singularity for I1,, near the tip can be obtained by taking the asymptotic
limit of (49) as r - 0.

208(04 %)+ psin(0 +x) " !
o/ (r.6) = Re[F’_,, s '<L°“( xxp )> (—2a) " \Fé_& (56)
Cosx+psinyx

which shows that the orders of the singularity in the stress and electric displacement fields
at the tipare " ' (K =1.2.3.4).
In addition. if the two materials become identical and » = 0. it follows from (44) that

G =(AB-'—AB. ") " (57)

Itis obvious that G = — G. Therefore. the roots 7, of (40) are equal to — 1. Substituting



588 Qing-Hua Qin and Shou-Wen Yu

this result into (46),. one sees that m, = 12 for all K. Thus. the matrix S may be singular.
In this case we can directly solve (36) for ¥'(z), which vields

T (58)

Further. if x # 0 we may also prove that m, = 1.2 through use of a coordinate system
local to the crack line and an appropriate transformation given in Yu and Qin (1996). For
the sake of conciseness we omit those details. which are tedious and algebraic here.

5. NUMERICAL ILLUSTRATION

For convenience we only consider an inclined crack terminating at the interface between
transversely 1sotropic materials. The upper and lower materials are assumed to be the PZT-
5H and the PZT-5, respectively. The material constants for the two materials are given in
the Appendix.

Equation (10). for the case of a transversely isotropic material. reduces to

(Caap™ +CosNaop' +aip* +ap” +a) =0 (59)
with

Uy = — (13035 — Ex3031C00

ay = ":H[(‘T‘z + 2011 Can — a0 [ (e 35 [2035 (015 + o) — Cop €13+ €15)]
—€35(2053¢ 1 F Canlrs) — &)1 Ca1Cq

a> =&y [('f; + 2011 ¢60 — e [ (e Feas)[2e) (6 F o) — ¢y (e +exs)]
= {0+ 2006055 ) — 83101 Co

dxr = —Chelen o +ery)

in which the well-known two index notation has been adopted (Nye, 1957). ¢,; and e, are
the reduced material constants obtained by using the following convention : replace ij or k/
by p and ¢. where 1. j. k. / take the values of -3, and p. ¢ assume the values 1-6 according
to the following :

ijorkl 11 22 33 23 o0r 32 3lorl3 12 or 21
pory 1 2 3 4 5 6

In accordance to this representation it follows that ¢, = Cyyp. e, = ey for i, j b, 1 = 1~
p.g=1-6.
The solutions of (59) for PZ7-5H and PZT-5 are

pi=—0.1735409318i. p' =0.1735+0.9318i.
pS = 009337, pl = 0.9972i.
ph= —02033+08813i. pt=0.2033+0.8813i.
Pt =10.9280i. ph = 0.9620i.
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Table 1. The values of s, vs angle »

b1 0 S 15 28 35 45 90

Re(nn) 0.5000 0.5304 0.3493 0.2447 0.1382 0.0299 0.5000
Re(m.) 0.5417 0.4457 0.4004 0.3553 0.3060 0.2533 0.0678
Re(n1;) 0.4399 0.4451 0.5167 0.5077 0.5022 0.4977 0.0696
Re(mi) 0.5000 0.4230 0.4169 0.3615 0.3060 0.2504 0.5000
[m(pr, x 10%) 0.00 —0.7225 0.0903 0.1734 0.0563 —0.446 0.0002
Imsm, x 107 - 0.3466 2147 -0.0037 0.0684 —-0.1400 2.36% 0.0013
Im(mr. x 107 0.1517 - 7.569 -2.312 - 35858 - 1.944 —5.445 0.0021
Im(nr, x 10%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0

The vartations of the singularity order m, with the angle x are presented in Table 1.

It can be seen from Table | that the order of singularity in the stress and electric
displacement fields depends strongly on the inclined angle x. However. the numerical results
indicate that the values of Im{#,) are very small for the material combination PZ7-5H and
PZT-5.

6. CONCLUSIONS

The planc problem of a crack that terminates at the interface between two piezoelectric
materials has been treated. The study shows that this problem can be transformed into a
non-homogeneous Hilbert problem by way of the concept of the axial conjugate. The
numerical results indicate that the order of singularity in the traction-charge field at the
crack tips depends strongly on the inclined angle x.
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APPENDIX

(1) Material properties for P/£T-3H (Pak. 1992)
=y = 126 GPa.

¢y = S5GPa.
2= ¢, = 53GPa.
¢y = 17GPa.

Coo = (o = 35.3GPaL
oy = - o) = 3IS5GPa.
cp=¢n = - 6.5C m.
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e, =233Cm.

=0 = 17C me.

foo= e = 150 x 10 "C Vm.
£, = 130x10 "C Vm.

&)

Material properties for PZ7-5 (Dunn and Taya. 1993) :
¢n=ca= 121 GPa.

v = 75.4GPa.
¢ =c¢.. = 75.2GPa,
¢y = H1GPa.

Coo = Con = 21.1 GPa,

e.=r¢p = —54Cm.

o) = 158C o,

o= 0o = 123C m,
o= 8107 %10 "'C V.
346 x 10 ""C'Vm.

It should be noted that the indices in the Appendix of Pak (1992) and in Table 1 of Dunn and Taya (1993)
have been changed due to the different coordinate systems used. In our study the x;-axis is chosen to be the poling
direction. and the crack line is in the x,—x, plane.



